package cn.com.yitong.test;
import java.util.Arrays;
import org.junit.Test;public class DemoTest {
@Test public void bubbleSort() { /** * 冒泡排序 */ int[] arr ={11,2,33,4,51,7,10,22}; int temp ; for(int i =0;i<arr.length-1;i++){ for(int j =0;j<arr.length-i-1;j++){ if(arr[j+1]<arr[j]){ temp =arr[j]; arr[j]=arr[j+1]; arr[j+1]=temp; } } } System.out.println(Arrays.toString(arr)); System.out.println("success"); } /** * 快速排序 * 从数列中挑出一个元素,称为“基准” * 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后, * 该基准是它的最后位置。这个称为分割(partition)操作。 * 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。 * * @param numbers * @param start * @param end */ public static void main(String[] args) { int[] numbers ={1,12,9,7,66,36,25,10}; int start = 0; int end = 7; quickSort(numbers, start, end); } public static void quickSort(int[] numbers, int start, int end) { if (start < end) { int base = numbers[start]; // 选定的基准值(第一个数值作为基准值) int temp; // 记录临时中间值 int i = start, j = end; do { while ((numbers[i] < base) && (i < end)) i++; while ((numbers[j] > base) && (j > start)) j--; if (i <= j) { temp = numbers[i]; numbers[i] = numbers[j]; numbers[j] = temp; i++; j--; } } while (i <= j); if (start < j) quickSort(numbers, start, j); if (end > i) quickSort(numbers, i, end); } } }
====================================================================================================================================
/** * 冒泡法排序 * 比较相邻的元素。如果第一个比第二个小,就交换他们两个。 * 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最小的数。 * 针对所有的元素重复以上的步骤,除了最后一个。 * 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。 * * @param numbers * 需要排序的整型数组 */ public static void bubbleSort01(int[] numbers) { int temp; // 记录临时中间值 int size = numbers.length; // 数组大小 for (int i = 0; i < size - 1; i++) { for (int j = i + 1; j < size; j++) { if (numbers[i] < numbers[j]) { // 交换两数的位置 temp = numbers[i]; numbers[i] = numbers[j]; numbers[j] = temp; } } } }
注意:以上不知是什么排序,将基准位置的元素和后面的元素进行比较,如果基准位置值比后面元素小,则交换位置,交换后的元素为新的基准元素。以下才是真正的冒泡排序。
public static void bubbleSort(int[] a) { int temp; int size = a.length; for(int i=1; i
二、快速排序
快速排序使用分治法策略来把一个序列分为两个子序列。
/** * 快速排序 * * 从数列中挑出一个元素,称为“基准” * 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后, * 该基准是它的最后位置。这个称为分割(partition)操作。 * 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。 * * @param numbers * @param start * @param end */ public static void quickSort(int[] numbers, int start, int end) { if (start < end) { int base = numbers[start]; // 选定的基准值(第一个数值作为基准值) int temp; // 记录临时中间值 int i = start, j = end; do { while ((numbers[i] < base) && (i < end)) i++; while ((numbers[j] > base) && (j > start)) j--; if (i <= j) { temp = numbers[i]; numbers[i] = numbers[j]; numbers[j] = temp; i++; j--; } } while (i <= j); if (start < j) quickSort(numbers, start, j); if (end > i) quickSort(numbers, i, end); } }
如下为完全符合快速排序定义的算法:
public static void quickSort01(int[] a, int start, int end) { if(start >= end) return; int i = start; int j = end; int base = a[start]; while(i != j) { while(a[j] >= base && j > i) j--; while(a[i] <= base && i < j) i++; if(i < j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } } a[start] = a[i]; a[i] = base; te(a, start, i - 1); te(a, i + 1, end);}
三、选择排序
选择排序是一种简单直观的排序方法,每次寻找序列中的最小值,然后放在最末尾的位置。
/** * 选择排序 * 在未排序序列中找到最小元素,存放到排序序列的起始位置 * 再从剩余未排序元素中继续寻找最小元素,然后放到排序序列起始位置。 * 以此类推,直到所有元素均排序完毕。 * * @param numbers */ public static void selectSort(int[] numbers) { int size = numbers.length; int temp; for (int i = 0; i < size; i++) { int k = i; for (int j = size - 1; j >i; j--) { if (numbers[j] < numbers[k]) { k = j; } } temp = numbers[i]; numbers[i] = numbers[k]; numbers[k] = temp; } }
四、插入排序
插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。其具体步骤参见代码及注释。
/** * 插入排序 * * 从第一个元素开始,该元素可以认为已经被排序 * 取出下一个元素,在已经排序的元素序列中从后向前扫描 * 如果该元素(已排序)大于新元素,将该元素移到下一位置 * 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 * 将新元素插入到该位置中 * 重复步骤2 * @param numbers */ public static void insertSort(int[] numbers) { int size = numbers.length, temp, j; for(int i=1; i0 && temp < numbers[j-1]; j--) numbers[j] = numbers[j-1]; numbers[j] = temp; } }
五、归并排序
归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作。
/** * 归并排序 * * 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 * 设定两个指针,最初位置分别为两个已经排序序列的起始位置 * 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 * 重复步骤3直到某一指针达到序列尾 * 将另一序列剩下的所有元素直接复制到合并序列尾 * * @param numbers */ public static void mergeSort(int[] numbers, int left, int right) { int t = 1;// 每组元素个数 int size = right - left + 1; while (t < size) { int s = t;// 本次循环每组元素个数 t = 2 * s; int i = left; while (i + (t - 1) < size) { merge(numbers, i, i + (s - 1), i + (t - 1)); i += t; } if (i + (s - 1) < right) merge(numbers, i, i + (s - 1), right); } }
/** * 归并算法实现 * * @param data * @param p * @param q * @param r */ private static void merge(int[] data, int p, int q, int r) { int[] B = new int[data.length]; int s = p; int t = q + 1; int k = p; while (s <= q && t <= r) { if (data[s] <= data[t]) { B[k] = data[s]; s++; } else { B[k] = data[t]; t++; } k++; } if (s == q + 1) B[k++] = data[t++]; else B[k++] = data[s++]; for (int i = p; i <= r; i++) data[i] = B[i]; }